

VE-ASCOT
Remote Attestation with
Hardware Fingerprinting

▶ Complex distributed production processes of
electronic assemblies involve multiple manufacturers
worldwide.

▶ Trust in manufacturers plays an important role in the
production of high-quality components:
 manufacturing quality functionality integrity

▶ Attacks on the supply chain are possible, especially
the replacement of electronic components.

▶ A unique identity of electronic components is lacking,
which would make replacements detectable.

▶ Compromise of hardware components cannot be
detected with state-of-the-art attestation techniques.

PROBLEM

▶ Identify, measure, digitize, process, and classify
unique analog hardware characteristics.

▶ Put fingerprints into chain of trust during production.
▶ Verify during commissioning and operation.
▶ Cryptographically secured chain of trust with all

production steps + specific hardware characteristics.
▶ Use of Trusted Platform Module (TPM) and the

Device Identifier Composition Engine (DICE).
▶ Extend remote attestation to include hardware

characteristics, in addition to software characteristics.
▶ Standardize procedures and protocols within the

IETF and Trusted Computing Group (TCG).

APPROACH

▶ Achieved Goals & Results
 Identified analog hardware characteristics
 Long-term measurement of step response in PoCs
 Verification with remote attestation
 Standardization success: RFC 9334

▶ Planned Results & Current Work
 Integration into TPM + DICE ecosystem
 Standardization in IETF and TCG

RESULTS

03/2021 – 12/2024

ENHANCED TPM 2.0 REMOTE ATTESTATION

▶ Discovery: Temperature and humidity have an effect

LONG-TERM ANALOG MEASUREMENTS (~1Y)

LOG FORMAT FOR ANALOG MEASUREMENTS
AnalogMeasurement = [

version-tag: uint, ; version of the format specification
start-time: Time,
measurements: [* MeasurementSeries]

]

MeasurementSeries = (
target: Target,
?env-params: [* NameValuePair],
?start-time: Time,
unit: Unit,
unit-multiple: UnitMultiple,
measurements: RegularMeasurementSeries

// IrregularMeasurementSeries,
)

RegularMeasurementSeries = {
values => [* NumericalValue],
interval-frequency-duration,

}

IrregularMeasurementSeries = [* (
current-time: Time,
NumericalValue,

),
]
…

Time = [
seconds: uint / float,
unit-mult: UnitMultipleSi,

]

Frequency = [
hertz: uint / float,
unit-multiple: UnitMultipleSi,

]

NumericalValue = (
value: int / float,

)

Unit = &(
UNIT_UNDEFINED : 0,
UnitElectricalSi,

) ; EXTENSION POINT for future units

UnitElectricalSi = &(
UNIT_ELECTRICAL_SI_NONE : 1,
UNIT_ELECTRICAL_SI_VOLTAGE : 2,
UNIT_ELECTRICAL_SI_CURRENT : 3,
UNIT_ELECTRICAL_SI_RESISTANCE : 4,
UNIT_ELECTRICAL_SI_CONDUCTANCE : 5,
UNIT_ELECTRICAL_SI_CAPACITANCE : 6,
UNIT_ELECTRICAL_SI_CHARGE : 7,
UNIT_ELECTRICAL_SI_INDUCTANCE : 8,
UNIT_ELECTRICAL_SI_POWER : 9,
UNIT_ELECTRICAL_SI_IMPEDANCE : 10,
UNIT_ELECTRICAL_SI_FREQUENCY : 11,

)
…

Concise Data Definition
Language (CDDL); RFC 8610

HARDWARE MEASUREMENT SETUP (POC)

	Slide 1

