

Scalable Infrastructure for Edge Computing

# **Formal Security Verification** of Processors

**RPTU Kaiserslautern-Landau, Siemens EDA** 

SPONSORED BY THE



Federal Ministry of Education and Research

### Motivation

"It's time for architects to redefine computer architecture and treat security as a first-class citizen [...]" – Hennessy & Patterson's Turing Award lecture, 2018

"The security of our products is one of our most important priorities. [...]" – Pat Gelsinger, CEO Intel, 2021

### Formal Hardware Verification

#### **"Formal" Verification**

- Exhausts a design's functional space by rigorous mathematical methods
- Well-defined coverage

#### State of the art



This article is more than 2 years old Meltdown and Spectre: 'worst ever' CPU bugs affect virtually all computers

Everything from smartphones and PCs to cloud computing affected by major security



#### Never ending cycle of new attacks and selective patches calls for security guarantees

- Verification of functional correctness
- Not covered: Microarchitectural Timing Side Channels



hu 4 Jan 2018 12.06 G

# **UPEC:** Formal Security Verification

#### **Threat model**

User-level program (attacker) steals secret data 

#### **UPEC** = Unique Program Execution Checking

- Formally verifies whether results and timing of a userlevel program exhibits dependence on confidential data
- **Operates at the Register Transfer Level**

# **UPEC** in Action

**Case Study: TGC RISC-V cores by Minres** We applied UPEC to the Minres TGC cores developed in S4E and detected 5 security bugs

| Core Version       | Security Bug                                    |
|--------------------|-------------------------------------------------|
| TGC_D 0.8.0        | MEPC CSR was not initialized properly           |
| TGC_D 0.8.0        | Accesses were blocked without PMP configuration |
| TGC_D 0.8.1        | PMP NA4 mode granularity too large              |
| TGC_D 0.8.1        | PMP NAPOT mode: incorrect address masks         |
| <b>TGC D 0.8.1</b> | PMP TOR mode: incorrect address bounds          |





#### AG(secret\_data\_protected $\wedge \mu_{state_1} = \mu_{state_2}$ $\rightarrow AG arch_{state_1} = arch_{state_2}$ )

#### $\rightarrow$ UPEC guarantees confidentiality of a processor

All bugs were fixed by Minres, UPEC certified fixed design

#### **UPEC integration into commercial OneSpin 360 tool**

- Siemens EDA develops UPEC app
- Integration into SEDA OneSpin with high degree of automation

# **UPEC** Results

UPEC detected several security vulnerabilities in processors.

|                             | Rocket            | RI5CY           | TGC_D/E        | Ariane            | BOOM                     |
|-----------------------------|-------------------|-----------------|----------------|-------------------|--------------------------|
| Pipeline                    | 5-stage           | 4-stage         | 4/5-stage      | 5-stage           | 12-stage                 |
| Out-of-order<br>execution   | no                | no              | no             | Score-<br>board   | Deep<br>out-of-order     |
| Detected<br>Vulnerabilities | ORC,<br>Bugs      | Bugs in<br>PMP  | Bugs in<br>PMP | Integrity<br>bugs | Spectres and<br>Meltdown |
| Vendor/<br>Organization     | CHIPS<br>Alliance | OpenHW<br>Group | Minres<br>GmbH | lowRISC           | UC Berkley               |

## Publications and Awards

- M. R. Fadiheh, J. Müller, R. Brinkmann, S. Mitra, D. Stoffel, and W. Kunz: A Formal Approach for Detecting Vulnerabilities to Transient Execution Attacks in Out-of-Order Processors, DAC'20.
- J. Müller, M. R. Fadiheh, A. Duque-Antón, T. Eisenbarth, D. Stoffel, W. Kunz: A Formal Approach to Confidentiality Verification in SoCs at the Register

UPEC certified security after fixing all security bugs.

Transfer Level, DAC'21. Intel Hardware Security Academic Award

- L. Deutschmann, J. Müller, M. R. Fadiheh, D. Stoffel, and W. Kunz: Towards a Formally Verified Hardware Root-of-Trust for Data-Oblivious Hardware, DAC'22. Best Paper Award
- M. R. Fadiheh, A. Wezel, J. Müller, J. Bormann, S. Ray, J. M. Fung, S. Mitra, D. Stoffel, and W. Kunz:

An Exhaustive Approach to Detecting Transient Execution Side Channels in RTL Designs of Processors, TC'23.

This work has been developed in the ZuSE project Scale4Edge. Scale4Edge is funded by the German ministry of education and research (BMBF) (reference numbers: 16ME0122K-16ME0140+16ME0465). The authors are responsible for the content of this publication.



SIEMENS