

### TECHNISCHE UNIVERSITÄT IN DER KULTURHAUPTSTADT EUROPAS CHEMNITZ

# **VE-VIDES**

Development of Trustworthy Design Methods and a MEMS-based Fingerprinting Architecture

Schott, Christian<sup>1</sup>; Meinel, Katja<sup>1</sup>; Mayer, Franziska<sup>1</sup>; Gupta, Dhruv<sup>1</sup>; Mittag, Sebastian<sup>1</sup>; Hahn, Susann<sup>1</sup>; Weidlich, Sebastian<sup>1</sup>; Bülz, Daniel<sup>2</sup>; Forke, Roman<sup>2</sup>; Hiller, Karla<sup>1,2</sup>; Kuhn, Harald<sup>1,2</sup>; Heinkel, Ulrich<sup>1</sup>

<sup>1</sup> Technische Universität Chemnitz, Fakultät für Elektrotechnik und Informationstechnik, 09126 Chemnitz

<sup>2</sup>Fraunhofer-Institut für Elektronische Nanosysteme ENAS, 09126 Chemnitz

# **Trustworthy Design Methods**

# **MEMS-based Fingerprinting Architecture**

#### **Modelling of Trustworthy Requirements**

- Formulation of concerns describing certain threats/hazards
  Part of common specification and its requirements
- Concerns are solved by trustworthy entities and its components
- Integrated in an in-house requirements engineering tool SpecScribe





Trustworthy Requirements

- Micro-Electro-Mechanical System (MEMS) as physical unclonable function (PUF): MEMS varactor array
- Fingerprint calculation and evaluation in FPGA with hashed key
- Challenge-Response method
- 64 Bit Fingerprint



Physical Unclonable Function





### **Formal Properties for Hardware Monitors**

- Formal specification of hardware designs using InTerval Language (ITL)
- Application field in project: Hardware Monitors for trustworthy designs

Testbencl

.vhd

Verification of the

generated Hardware

Mentor

ModelSim Verification Software

Proof-of-concept HLS flow

Proof of

Completeness and

Consistency

360MV Verification Softwar

onesp

• Generating hardware monitors for Fingerprinting FPGA implementation



### Formal Modelling of Workflows and Checklists

- Generalization for different fields of application
- Dedicated ReqIF model for objects, activities, relations and results
- Implementation in tool SpecScribe

 Goal: individual workflows and checklists formal and interchangeable amongst all partners within the product development lifecycle





. Formal proof of completeness and consistency using *OneSpin 360MV* 

SpecScribe

Specification in tool

3. Synthesis using in-house HLS tool *vhisyn* 



#### Contact:

Prof. Dr.-Ing. Ulrich Heinkel Professur Schaltkreis- und Systementwurf Technische Universität Chemnitz Reichenhainer Str. 70 09126 Chemnitz







ENAS